Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Environ Toxicol Pharmacol ; 107: 104430, 2024 Apr.
Article En | MEDLINE | ID: mdl-38552755

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.


Aroclors , Fatty Liver , Selenium , Male , Mice , Animals , Proteome/metabolism , Glutathione Peroxidase/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Liver/metabolism
2.
Thromb Haemost ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38040030

BACKGROUND: Factor XIII (FXIII) forms covalent crosslinks across plasma and cellular substrates and has roles in hemostasis, wound healing, and bone metabolism. FXIII activity is implicated in venous thromboembolism (VTE) and is a target for developing pharmaceuticals, which requires understanding FXIII - substrate interactions. Previous studies proposed the ß-sandwich domain of the FXIII A subunit (FXIII-A) exhibits substrate recognition sites. MATERIAL AND METHODS: Recombinant FXIII-A proteins (WT, K156E, F157L, R158Q/E, R171Q, and R174E) were generated to identify FXIII-A residues mediating substrate recognition. Proteolytic (FXIII-A*) and non-proteolytic (FXIII-A°) forms were analyzed for activation and crosslinking activities toward physiological substrates using SDS-PAGE and MALDI-TOF MS. RESULTS: All FXIII-A* variants displayed reduced crosslinking abilities compared to WT for Fbg αC (233 - 425), fibrin, and actin. FXIII-A* WT activity was greater than A°, suggesting the binding site is more exposed in FXIII-A*. With Fbg αC (233 - 425), FXIII-A* variants R158Q/E, R171Q, and R174E exhibited decreased activities approaching those of FXIII-A°. However, with a peptide substrate, FXIII-A* WT and variants showed similar crosslinking suggesting the recognition site is distant from the catalytic site. Surprisingly, FXIII-A R158E and R171Q displayed slower thrombin activation than WT, potentially due to loss of crucial H-bonding with neighboring activation peptide (AP) residues. CONCLUSION: In conclusion, FXIII-A residues K156, F157, R158, R171, and R174 are part of a binding site for physiological substrates [fibrin (α and γ) and actin]. Moreover, R158 and R171 control AP cleavage during thrombin activation. These investigations provide new molecular details on FXIII - substrate interactions that control crosslinking abilities.

3.
Environ Toxicol Pharmacol ; 103: 104260, 2023 Oct.
Article En | MEDLINE | ID: mdl-37683712

Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.

4.
Endocr Relat Cancer ; 30(11)2023 11 01.
Article En | MEDLINE | ID: mdl-37650685

Despite the successful combination of therapies improving survival of estrogen receptor α (ER+) breast cancer patients with metastatic disease, mechanisms for acquired endocrine resistance remain to be fully elucidated. The RNA binding protein HNRNPA2B1 (A2B1), a reader of N(6)-methyladenosine (m6A) in transcribed RNA, is upregulated in endocrine-resistant, ER+ LCC9 and LY2 cells compared to parental MCF-7 endocrine-sensitive luminal A breast cancer cells. The miRNA-seq transcriptome of MCF-7 cells overexpressing A2B1 identified the serine metabolic processes pathway. Increased expression of two key enzymes in the serine synthesis pathway (SSP), phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate dehydrogenase (PHGDH), correlates with poor outcomes in ER+ breast patients who received tamoxifen (TAM). We reported that PSAT1 and PHGDH were higher in LCC9 and LY2 cells compared to MCF-7 cells and their knockdown enhanced TAM sensitivity in these-resistant cells. Here we demonstrate that stable, modest overexpression of A2B1 in MCF-7 cells increased PSAT1 and PHGDH and endocrine resistance. We identified four miRNAs downregulated in MCF-7-A2B1 cells that directly target the PSAT1 3'UTR (miR-145-5p and miR-424-5p), and the PHGDH 3'UTR (miR-34b-5p and miR-876-5p) in dual luciferase assays. Lower expression of miR-145-5p and miR-424-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PSAT1 and lower expression of miR-34b-5p and miR-876-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PHGDH. Transient transfection of these miRNAs restored endocrine-therapy sensitivity in LCC9 and ZR-75-1-4-OHT cells. Overall, our data suggest a role for decreased A2B1-regulated miRNAs in endocrine resistance and upregulation of the SSP to promote tumor progression in ER+ breast cancer.


Breast Neoplasms , MicroRNAs , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Breast Neoplasms/pathology , 3' Untranslated Regions , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast/metabolism , MCF-7 Cells , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
5.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article En | MEDLINE | ID: mdl-37446386

Connexin 43 (Cx43) is expressed in the left and right ventricles and is primarily responsible for conducting physiological responses in microvasculature. Studies have demonstrated that NADPH oxidase (NOX) enzymes are essential in cardiac redox biology and are responsible for the generation of reactive oxygen species (ROS). NOX2 is linked to left ventricular remodeling following myocardial infarction (MI). It was hypothesized that conjugated linoleic acid (cLA) treatment increases NOX-2 levels in heart tissue and disrupts connexins between the myocytes in the ventricle. Data herein demonstrate that cLA treatment significantly decreases survival in a murine model of MI. The observance of cLA-induced ventricular tachyarrhythmia's (VT) led to the subsequent investigation of the underlying mechanism in this MI model. Mice were treated with cLA for 12 h, 24 h, 48 h, or 72 h to determine possible time-dependent changes in NOX and Cx43 signaling pathways in isolated left ventricles (LV) extracted from cardiac tissue. The results suggest that ROS generation, through the stimulation of NOX2 in the LV, triggers a decrease in Cx43 levels, causing dysfunction of the gap junctions following treatment with cLA. This cascade of events may initiate VT and subsequent death during MI. Taken together, individuals at risk of MI should use caution regarding cLA consumption.


Linoleic Acids, Conjugated , Myocardial Infarction , Mice , Animals , Connexin 43/metabolism , Linoleic Acids, Conjugated/pharmacology , Reactive Oxygen Species/metabolism , Myocardial Infarction/metabolism , NADPH Oxidases/metabolism , Connexins/metabolism , Death, Sudden , Ventricular Remodeling
6.
Environ Toxicol Pharmacol ; 100: 104138, 2023 Jun.
Article En | MEDLINE | ID: mdl-37137421

Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.


Non-alcoholic Fatty Liver Disease , Polychlorinated Biphenyls , Male , Animals , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Polychlorinated Biphenyls/metabolism , Liver/metabolism , Diet, High-Fat , RNA , Mice, Inbred C57BL
7.
Environ Res ; 216(Pt 3): 114686, 2023 01 01.
Article En | MEDLINE | ID: mdl-36341798

Exposure to polychlorinated biphenyls (PCBs) has been associated with liver injury in human cohorts and with nonalcoholic steatohepatitis (NASH) in mice fed a high fat diet (HFD). N (6)-methyladenosine (m6A) modification of mRNA regulates transcript fate, but the contribution of m6A modification on the regulation of transcripts in PCB-induced steatosis and fibrosis is unknown. This study tested the hypothesis that PCB and HFD exposure alters the levels of m6A modification in transcripts that play a role in NASH in vivo. Male C57Bl6/J mice were fed a HFD (12 wks) and administered a single oral dose of Aroclor1260, PCB126, or Aroclor1260 + PCB126. Genome-wide identification of m6A peaks was accomplished by m6A mRNA immunoprecipitation sequencing (m6A-RIP) and the mRNA transcriptome identified by RNA-seq. Exposure of HFD-fed mice to Aroclor1260 decreased the number of m6A peaks and m6A-containing genes relative to PCB vehicle control whereas PCB126 or the combination of Aroclor1260 + PCB126 increased m6A modification frequency. ∼41% of genes had one m6A peak and ∼49% had 2-4 m6A peaks. 117 m6A peaks were common in the four experimental groups. The Aroclor1260 + PCB126 exposure group showed the highest number (52) of m6A-peaks. qRT-PCR confirmed enrichment of m6A-containing fragments of the Apob transcript with PCB exposure. A1cf transcript abundance, m6A peak count, and protein abundance was increased with Aroclor1260 + PCB126 co-exposure. Irrespective of the PCB type, all PCB groups exhibited enriched pathways related to lipid/lipoprotein metabolism and inflammation through the m6A modification. Integrated analysis of m6A-RIP-seq and mRNA-seq identified 242 differentially expressed genes (DEGs) with increased or reduced number of m6A peaks. These data show that PCB exposure in HFD-fed mice alters the m6A landscape offering an additional layer of regulation of gene expression affecting a subset of gene responses in NASH.


Non-alcoholic Fatty Liver Disease , Polychlorinated Biphenyls , Male , Mice , Humans , Animals , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Methylation , Liver/metabolism , Mice, Inbred C57BL , Disease Models, Animal , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Environ Toxicol Pharmacol ; 94: 103928, 2022 Aug.
Article En | MEDLINE | ID: mdl-35803474

Exposure to high fat diet (HFD) and persistent organic pollutants including polychlorinated biphenyls (PCBs) is associated with liver injury in human populations and non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. Previously, exposure of HFD-fed male mice to the non-dioxin-like (NDL) PCB mixture Aroclor1260, dioxin-like (DL) PCB126, or Aroclor1260 + PCB126 co-exposure caused toxicant-associated steatohepatitis (TASH) and differentially altered the liver proteome. Here unbiased mRNA and miRNA sequencing (mRNA- and miRNA- seq) was used to identify biological pathways altered in these liver samples. Fewer transcripts and miRs were up- or down- regulated by PCB126 or Aroclor1260 compared to the combination, suggesting that crosstalk between the receptors activated by these PCBs amplifies changes in the transcriptome. Pathway enrichment analysis identified "positive regulation of Wnt/ß-catenin signaling" and "role of miRNAs in cell migration, survival, and angiogenesis" for differentially expressed mRNAs and miRNAs, respectively. We evaluated the five miRNAs increased in human plasma with PCB exposure and suspected TASH and found that miR-192-5p was increased with PCB exposure in mouse liver. Although we observed little overlap between differentially expressed mRNA transcripts and proteins, biological pathway-relevant PCB-induced miRNA-mRNA and miRNA-protein inverse relationships were identified that may explain protein changes. These results provide novel insights into miRNA and mRNA transcriptome changes playing direct and indirect roles in the functional protein pathways in PCB-related hepatic lipid accumulation, inflammation, and fibrosis in a mouse model of TASH and its relevance to human liver disease in exposed populations.


MicroRNAs , Non-alcoholic Fatty Liver Disease , Polychlorinated Biphenyls , Animals , Disease Models, Animal , Humans , Liver/metabolism , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/toxicity , RNA, Messenger/metabolism
9.
Environ Epigenet ; 7(1): dvab008, 2021.
Article En | MEDLINE | ID: mdl-34548932

Exposure to a single dose of polychlorinated biphenyls (PCBs) and a 12-week high-fat diet (HFD) results in nonalcoholic steatohepatitis (NASH) in mice by altering intracellular signaling and inhibiting epidermal growth factor receptor signaling. Post-transcriptional chemical modification (PTM) of RNA regulates biological processes, but the contribution of epitranscriptomics to PCB-induced steatosis remains unknown. This study tested the hypothesis that PCB and HFD exposure alters the global RNA epitranscriptome in male mouse liver. C57BL/6J male mice were fed a HFD for 12 weeks and exposed to a single dose of Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), both Aroclor 1260 and PCB 126 or vehicle control after 2 weeks on HFD. Chemical RNA modifications were identified at the nucleoside level by liquid chromatography-mass spectrometry. From 22 PTM global RNA modifications, we identified 10 significant changes in RNA modifications in liver with HFD and PCB 126 exposure. Only two modifications were significantly different from HFD control liver in all three PCB exposure groups: 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A). Exposure to HFD + PCB 126 + Aroclor 1260 increased the abundance of N(6), O(2)-dimethyladenosine (m6Am), which is associated with the largest number of transcript changes. Increased m6Am and pseudouridine were associated with increased protein expression of the writers of these modifications: Phosphorylated CTD Interacting Factor 1 (PCIF1) and Pseudouridine Synthase 10 (PUS10), respectively, in HFD + PCB 126- + Aroclor 1260-exposed mouse liver. Increased N1-methyladenosine (m1A) and m6A were associated with increased transcript levels of the readers of these modifications: YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2), YTH Domain Containing 2 (YTHDC2), and reader FMRP Translational Regulator 1 (FMR1) transcript and protein abundance. The results demonstrate that PCB exposure alters the global epitranscriptome in a mouse model of NASH; however, the mechanism for these changes requires further investigation.

10.
Cancer Lett ; 518: 152-168, 2021 10 10.
Article En | MEDLINE | ID: mdl-34273466

Despite new combination therapies improving survival of breast cancer patients with estrogen receptor α (ER+) tumors, the molecular mechanisms for endocrine-resistant disease remain unresolved. Previously we demonstrated that expression of the RNA binding protein and N6-methyladenosine (m6A) reader HNRNPA2B1 (A2B1) is higher in LCC9 and LY2 tamoxifen (TAM)-resistant ERα breast cancer cells relative to parental TAM-sensitive MCF-7 cells. Here we report that A2B1 protein expression is higher in breast tumors than paired normal breast tissue. Modest stable overexpression of A2B1 in MCF-7 cells (MCF-7-A2B1 cells) resulted in TAM- and fulvestrant- resistance whereas knockdown of A2B1 in LCC9 and LY2 cells restored TAM and fulvestrant, endocrine-sensitivity. MCF-7-A2B1 cells gained hallmarks of TAM-resistant metastatic behavior: increased migration and invasion, clonogenicity, and soft agar colony size, which were attenuated by A2B1 knockdown in MCF-7-A2B1 and the TAM-resistant LCC9 and LY2 cells. MCF-7-A2B1, LCC9, and LY2 cells have a higher proportion of CD44+/CD24-/low cancer stem cells (CSC) compared to MCF-7 cells. MCF-7-A2B1 cells have increased ERα and reduced miR-222-3p that targets ERα. Like LCC9 cells, MCF-7-A2B1 have activated AKT and MAPK that depend on A2B1 expression and are growth inhibited by inhibitors of these pathways. These data support that targeting A2B1 could provide a complimentary therapeutic approach to reduce acquired endocrine resistance.


Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Endocrine Cells/metabolism , Fulvestrant/pharmacology , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Tamoxifen/pharmacology , Adenosine/analogs & derivatives , Adenosine/metabolism , CD24 Antigen/metabolism , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , MCF-7 Cells , Neoplastic Stem Cells/metabolism , Signal Transduction/physiology
12.
Sci Rep ; 9(1): 9430, 2019 07 01.
Article En | MEDLINE | ID: mdl-31263129

MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor ß (TGFß) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFß signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.


Drug Resistance, Neoplasm/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , MicroRNAs/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Down-Regulation , Drug Resistance, Neoplasm/drug effects , Female , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , MCF-7 Cells , MicroRNAs/genetics , Signal Transduction/genetics , Tamoxifen/pharmacology , Transcriptome , Transforming Growth Factor beta/metabolism , Up-Regulation
13.
J Cell Physiol ; 233(7): 5214-5221, 2018 07.
Article En | MEDLINE | ID: mdl-29150941

The occurrence of myocardial infarction (MI) increases appreciably with age. In the Framingham Heart Study, the incidence of MI more than doubles for men and increases more than five-fold in women (ages 55-64 years compared to 85-94 years). MicroRNAs (miRNAs) quantitatively regulate their target's expression post-transcriptionally by either silencing action through binding at the 3'UTR domains or degrading the messages at their coding regions. In either case, these regulations affect the cardiac transcriptional output and cardiac function. Among the known cardiac associated miRNA, miRNA-1, miRNA-133a, and miRNA-34a have been shown to induce adverse structural remodeling to impair cardiac contractile function. In the present study, an in vivo model of MI in young (3 month) and old (22 month) mice is used to investigate the possible role whereby these three miRNAs exert negative effects on heart function following MI. Herein we demonstrate that in older mouse heart, all three microRNAs show increased levels of expression, while miRNA-1 shows a further increase in old mouse heart following MI, which corresponds to left ventricular (LV) wall thinning. These structural changes in cardiac tissue may causes downstream LV dilation and subsequent LV dysfunction. Results presented here suggest that significantly elevated levels of miRNA-1 in post-MI old heart could be predictive of cardiac injury in older mice as the high risk biomarker for MI in older individuals.


Aging/genetics , Heart Injuries/genetics , MicroRNAs/genetics , Myocardial Infarction/genetics , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Female , Heart Injuries/physiopathology , Humans , Male , Mice , Middle Aged , Myocardial Infarction/physiopathology , Sex Characteristics , Ventricular Function, Left/genetics
14.
J Nutr Biochem ; 34: 8-16, 2016 08.
Article En | MEDLINE | ID: mdl-27156147

Cardiovascular health is influenced by dietary composition and the western diet is composed of varying types/amounts of fat. Conjugated linoleic acid (cLA) is an abundant dietary unsaturated fatty acid associated with health benefits but its biological signaling is not well understood. Nitrite is enriched in vegetables within the diet and can impact signaling of unsaturated fatty acids; however, its role on cLA signaling is not well understood. Elucidating how nitrite may impact the biological signaling of cLA is important due to the dietary consumption of both cLA and nitrite in the western diet. Since co-administration of cLA and nitrite results in cardioprotection during myocardial infarction (MI), it was hypothesized that cLA and nitrite may affect cardiac mitochondrial respiratory function and complex activity in MI. C57BL/6J mice were treated with cLA and nitrite for either 10 or 13days, where MI was induced on day 3. Following treatment, respiration and complex activity were measured. Among the major findings of this study, cLA treatment (10days) decreases state 3 respiration in vivo. Following MI, nitrite alone and in combination with cLA attenuates increased state 3 respiration and decreases hydrogen peroxide levels. Further, nitrite and cLA co-treatment attenuates increased complex III activity after MI. These results suggest that cLA, nitrite and the combination significantly alter cardiac mitochondrial respiratory and electron transport chain activity in vivo and following MI. Overall, the daily consumption of cLA and nitrite in the diet can have diverse cardiovascular implications, some of which occur at the mitochondrial level.


Cardiotonic Agents/therapeutic use , Dietary Supplements , Disease Models, Animal , Linoleic Acids, Conjugated/therapeutic use , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/prevention & control , Sodium Nitrite/therapeutic use , Animals , Cardiotonic Agents/administration & dosage , Echocardiography , Electron Transport , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Heart/diagnostic imaging , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/metabolism , Linoleic Acids, Conjugated/administration & dosage , Male , Mice, Inbred C57BL , Mitochondria, Heart/enzymology , Mitochondrial Proton-Translocating ATPases/metabolism , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/metabolism , Oxidative Phosphorylation Coupling Factors/metabolism , Oxidative Stress
15.
Free Radic Biol Med ; 72: 66-75, 2014 Jul.
Article En | MEDLINE | ID: mdl-24721151

Conjugated linoleic acid (cLA) is a commercially available weight-loss supplement that is not currently regulated by the U.S. FDA. Numerous studies suggest that cLA mediates protection against diseases including cancer, diabetes, atherosclerosis, immune function, and obesity. Based upon these reports, it was hypothesized that supplementation with cLA would improve heart function in aged wild-type (WT) mice. At 10 months of age, mice were treated with cLA, nitrite, or the combination of the two. Echocardiograms revealed that cardiac function was decreased in aged compared to young WT mice, as determined by percentage of fractional shortening. Also, contrary to the hypothesis, mice that received cLA (6-week treatment) had significantly worse cardiac function compared to controls. This effect was attenuated when mice were cotreated with cLA and nitrite. Taken together, these results suggest that cLA-mediated cardiac injury can be circumvented by nitrite supplementation in a murine model of aging.


Endothelial Cells/drug effects , Linoleic Acids, Conjugated/pharmacology , Nitrates/pharmacology , Ventricular Function, Left/drug effects , Aging , Animals , Blotting, Western , Cattle , Humans , Mice , Mice, Inbred C57BL
16.
Redox Biol ; 2: 1-7, 2013.
Article En | MEDLINE | ID: mdl-24363996

According to the CDC, the most common type of heart disease is coronary artery disease, which commonly leads to myocardial infarction (MI). Therapeutic approaches to lessen the resulting cardiovascular injury associated with MI are limited. Recently, MicroRNAs (miRNAs) have been shown to act as negative regulators of gene expression by inhibiting mRNA translation and/or stimulating mRNA degradation. A single miRNA can modulate physiological or disease phenotypes by regulating whole functional systems. Importantly, miRNAs can regulate cardiac function, thereby modulating heart muscle contraction, heart growth and morphogenesis. MicroRNA-499 (miRNA-499) is a cardiac-specific miRNA that when elevated causes cardiomyocyte hypertrophy, in turn preventing cardiac dysfunction during MI. Previous studies revealed that combination treatment with conjugated linoleic acid (cLA) and nitrite preserved cardiovascular function in mice. Therefore, it was hypothesized that cLA and nitrite may regulate miRNA-499, thus providing cardiac protection during MI. To test this hypothesis, 12-week old mice were treated with cLA (10 mg/kg/d-via osmotic mini-pump) or cLA and nitrite (50 ppm-drinking water) 3 days prior to MI (ligation of the left anterior descending artery). Echocardiography and pressure-volume (PV)-loop analysis revealed that cLA and nitrite-treated MI mice had improved heart function (10 days following MI) compared to untreated MI mice. Treatment with cLA and nitrite significantly induced levels of miRNA-499 compared to untreated MI mice. In addition, treatment with cLA and nitrite abolished MI-induced protein expression of p53 and dynamin-related protein-1 (DRP-1). Moreover, the antioxidant enzyme expression of heme oxygenase-1 (HO-1) was elevated in MI mice treated with cLA and nitrite compared to untreated MI mice. Confocal imaging on heart tissue confirmed expression the levels of HO-1 and p53. Taken together, these results suggest that therapeutic treatment with cLA and nitrite may provide significant protection during MI through regulation of both cardiac specific miRNA-499 and upregulation of phase 2 antioxidant enzyme expression.


Linoleic Acids, Conjugated/therapeutic use , Myocardial Infarction/drug therapy , Nitrites/therapeutic use , Protective Agents/therapeutic use , Animals , Dynamins/metabolism , Echocardiography , Heart/physiopathology , Heme Oxygenase-1/metabolism , Hemodynamics , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Tumor Suppressor Protein p53/metabolism , Up-Regulation
...